The Clinical Course of Tuberculous Pericarditis in Immunocompetent Hosts Based on Serial Echocardiography

Min Sun Kim¹, Sung-A Chang², Sang-Chol Lee²

¹Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea

²Division of Cardiology, Department of Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
BACKGROUND

![Graph showing event-free survival with different etiologies.](image)

- **Idiopathic/Viral Etiology**
- **Specific Etiology**

Log rank $p < 0.001$

Patients at risk:
- **Idiopathic/viral:**
 - 416
 - 394
 - 387
 - 380
 - 372
 - 366
 - 354
 - 338
 - 320
 - 298
 - 275
- **Specific etiology:**
 - 84
 - 79
 - 70
 - 54
 - 47
 - 40
 - 32
 - 20
 - 8
 - 8
 - 8

Indian Heart J 68(2016) 316-324
Are initially presenting constrictive pericarditis irreversible in tuberculous pericarditis?

The role of corticosteroid for the evolution to constrictive pericarditis in immunocompetent patients with tuberculous pericarditis
AIM OF THIS STUDY

- To investigate clinical course of tuberculous pericarditis
- To analyze the change of echocardiographic parameters for constrictive pericarditis
METHODS

- Retrospective cohort study
 - TTE at baseline, 1, 3 and 6 months follow up

- Study population
 - January 2010 to January 2017
 - Consecutive patients with newly diagnosed tuberculous pericarditis
 - Immunocompetent patients
METHODS

- Diagnostic criteria for tuberculous pericarditis
 - Definite diagnosis
 - Identification of *Mycobacterium tuberculosis* in pericardial fluid or tissue
 - Probable diagnosis
 - Lymphocytic pericardial exudate with elevated adenosine deaminase levels, interferon-gamma
 - Caseous granulomas in the pericardium.
METHODS

- **Data collection**
 - Review of medical records at the time of diagnosis
 - Baseline demographics, comorbidities, date of diagnosis, presenting symptoms and signs, laboratory finding
 - Transthoracic echocardiography at 0, 1, 3 and 6 months
 - Treatment: standard treatment (HREZ 2 + HRE 4)
 - Prolonged treatment (HREZ > 6 months)
 - Corticosteroid
 - Therapeutic drainage (PCC vs surgical)
METHODS

- **Study variables in echocardiography**
 - Effusion vs Effusive constriction vs Constriction
 - The presence of effusion
 - The nature and amount, the presence of tamponade
 - Pericardial thickening
METHODS

- Study variables in echocardiography
 - The presence of constriction
 - Ventricular interdependence during respiration
 - Septal bouncing
 - Respiratory variation of mitral flow and tricuspid flow
 - Expiratory diastolic flow reversal of hepatic vein
 - Dilatation of Inferior vena cava or the presence of plethora
 - Septal and lateral mitral annulus early diastolic velocity
 (septal e’ and lateral e’)

Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>n=50</th>
<th>n=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male, n(%)</td>
<td>24 (48.0)</td>
<td></td>
</tr>
<tr>
<td>Age, mean±SD</td>
<td>63.94 ± 14.23</td>
<td></td>
</tr>
<tr>
<td>Body surface area, m², mean±SD</td>
<td>1.64 ± 0.17</td>
<td></td>
</tr>
<tr>
<td>Comorbidities, n(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>18 (36.0)</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>3 (6.0)</td>
<td></td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>6 (12.0)</td>
<td></td>
</tr>
<tr>
<td>History of pulmonary tuberculosis, n(%)</td>
<td>7 (14.0)</td>
<td></td>
</tr>
<tr>
<td>Extracardiac tuberculosis, n(%)</td>
<td>14 (28.0)</td>
<td></td>
</tr>
<tr>
<td>Initial symptoms, n(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td>33 (66.0)</td>
<td></td>
</tr>
<tr>
<td>Chest pain</td>
<td>11 (22.0)</td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>13 (26.0)</td>
<td></td>
</tr>
</tbody>
</table>

Diagnostic criteria
- Definite tuberculous pericarditis: 10 (20.0)
- Probable tuberculous pericarditis: 40 (80.0)

Anti-tuberculosis drug, n(%)
- Standard treatment: 28 (56.0)
- Prolonged treatment: 22 (44.0)
- Adjunctive corticosteroid therapy: 44 (88.0)

Drainage of pericardial effusion, n(%)
- Percutaneous pericardiocentesis: 11 (22.0)
- Surgical drainage: 16 (32.0)

*: 6-month four-drug standard treatment of tuberculosis
Laboratory Test and Initial Echocardiography

<table>
<thead>
<tr>
<th>Test</th>
<th>n=50</th>
<th>Initial Echocardiographic diagnosis, n(%)</th>
<th>n=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (x10³/μL)</td>
<td>6.43 ± 2.67</td>
<td>Pericardial effusion without complication</td>
<td>28 (58.0)</td>
</tr>
<tr>
<td>RBC (x10³/μL)</td>
<td>11.78 ± 1.54</td>
<td>Pericardial effusion with tamponade</td>
<td>7 (14.0)</td>
</tr>
<tr>
<td>C-reactive protein, Quantitative (mg/dL)</td>
<td>3.62 (6.62)</td>
<td>Effusive constriction</td>
<td>10 (20.0)</td>
</tr>
<tr>
<td>Troponin I (ng/ml)</td>
<td>0.006 (0.008)</td>
<td>Constriction without effusion</td>
<td>12 (24.0)</td>
</tr>
<tr>
<td>CK-MB (ng/ml)</td>
<td>0.73 (1.42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT-proBNP (pg/ml)</td>
<td>344.8 (761.6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pericardial effusion analysis (n=32)

<table>
<thead>
<tr>
<th>Type</th>
<th>n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lymphocyte dominant</td>
<td>21 (65.6)</td>
</tr>
<tr>
<td>Adenosine deaminase</td>
<td>71.4 ± 32.8</td>
</tr>
<tr>
<td>INF-γ, n(%)</td>
<td>11 (34.4)</td>
</tr>
</tbody>
</table>

Amount of pericardial effusion(n=39)

<table>
<thead>
<tr>
<th>Type</th>
<th>n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scanty</td>
<td>4 (10.3)</td>
</tr>
<tr>
<td>Small</td>
<td>5 (12.8)</td>
</tr>
<tr>
<td>Moderate</td>
<td>11 (28.2)</td>
</tr>
<tr>
<td>Large</td>
<td>19 (48.7)</td>
</tr>
</tbody>
</table>

*: mean ± SD
*: median(IQR)
*: pericardial INF-γ was conducted in only 14 patients
I: interferon
gamma

Clinical Course of Tuberculosis Pericarditis

Baseline
+(22)

1 month
M(3) - (11) + (8) M(3) - (28)

3 months
-(3) - (11) - (3) M(1) + (4) - (3) M(1) - (19) + (1) - (3) + (1)

6 months
-(3) - (10) + (1) - (3) + (1) - (2) + (2) - (3) - (1) - (19) - (1) - (3) + (1)

+(n): Number of patients with constriction
-(n): Number of patients without constriction
M(n): Missing data
Initial TTE in Effusion
Initial TTE in Effusive Constrictive Pericarditis
Initial TTE in Constrictive Pericarditis

Septal e'

Lateral e'
Echocardiographic Parameters Over Time

- Constriction
- Septal bouncing
- Ventricular interdependence
- HV reversal flow
- Pericardial thickening
- IVC plethora
- Septal e'/lateral e'>1

Proportion

Months

Proportion
The Resolution of Constrictive Pericarditis

Baseline → 1 month → 6 months
The Resolution of Constrictive Pericarditis

Baseline → 1 month → 6 months
The Resolution of Constrictive Pericarditis

Baseline → 1 month → 6 months

- Septal e'
- Lateral e'
- Diastolic HV flow reversal
SUMMARY & CONCLUSION

- Even if the CP was already present initially in tuberculous pericarditis, 82% patients fully recovered in immunocompetent hosts.
 - The residual CP occurred in only 10%.

- According to serial echocardiography in constrictive pericarditis.
 - Ventricular interdependence → the earliest parameter of improvement
 - Septal bouncing and pericardial thickening → remained at the latest

- Physicians should consider more active steroid therapy and expects to resolve of CP, although there is CP in the first diagnostic TTE.